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Abstract 

The physical basis of the conditional probability 
distributions of the quartet and of the triplet are 
investigated by means of the 'Patterson' and 'modulus' 
sum functions, respectively. From this study, a new 
conditional probability distribution of the triplet follows 
which has been tested on real data from three structures 
of different size. The empirically found distribution is 
compared with Cochran's closely related distribution. 

1. Introduction 

Historically, the practical application of structure 
invariants is related to the availability of the respective 
conditional probability distributions. Cochran (1955) 
showed that the probability distribution of the phase of a 
triplet, 

4,3(H, K) : ~o(-H) + ~o(K) + ~o(H - K), (1) 

given the product IE(H)E(K)E(H - K)I, corresponds to 
a 'von Mises' distribution centered at 0, 

1 
7:'(4'3) = 2rrlo[K(H, K)] exp[K(H, K)cos 4,3], (2) 

with I o being a modified Bessel function of the second 
kind (Watson, 1922, p. 181). Assuming throughout that 
the crystal structure consists of N equal atoms in the unit 
cell and that the space group is P1, then the 
concentration parameter determining the variance of 
this distribution reduces to 

2 
K(H, K) = ~ IE(H)E(K)E(H - K)I. (3) 

Since the distribution is always centred at 0, no negative 
triplets can be predicted with (2). In the case of a 
quartet, 

4,4(H, K, L) -- ~o(-H) + ~0(K) + ~o(L) + ~o(M), (4) 

with M - H - K - L, the situation is different. The 
use of quartets in direct procedures for phase solution 
was first introduced by Schenk (1973a,b, 1974). Later, 
Hauptman (1975a,b) and Giacovazzo (1976a,b) gave 
the probabilistic theories from quartets for P1. In 
practice, the following approximation (Giacovazzo, 
1976b) to the conditional probability distribution of 

the quartet is normally used (DeTitta, Weeks, Thuman, 
Miller & Hauptman, 1994), namely 

1 
T'(4,4) = 2:rlo[g(H, K, L)] exp{K(H, K, L) 

)< COS[~04 - -  l~r(I-I, K, L)]}, (5) 

where the concentration parameter is, 

2 
K(H, K, L) -- ~ IE(H)E(K)E(L)E(M)I IX(H, K, L)I 

(6) 

X(H, K, L) = IE( -H + K)I 2 + IE(-H + L)I 2 

+ IE(K + L) [  2 - 2.  (7 )  

This approximation to the probability distribution of the 
quartet is a 'von Mises' distribution conditioned by the 
seven magnitudes IE(H)I, IE(K)I, IE(L)I, IE(M)I, 
IE( -H + K)I, IE( -H + L)I and IE(K + L)I. Unlike 
(2), it is centered either at ¢ = 0 or zr depending on the 
sign of X(H, K, L). The most reliable estimates of ¢ are 
obtained when the four main terms IE(H)I, IE(K)I, 
IE(L)I and IE(M)I are all large, and simultaneously, the 
three 'cross terms' I E ( - H + K ) I ,  I E ( - H + L ) I ,  
IE(K + L)I are either all large or all small. In the first 
case positive quartets are predicted while the second 
case corresponds to the mostly negative quartets. 

Most conventional direct-methods procedures for 
solving small crystal structures are based on phase- 
refinement functions derived from the probability 
distributions of the structure invariants. Consequently, 
one possible way to gain information about the physical 
basis of the conditional probability distributions, is to 
convert these phase-refinement functions to real space. 
The simplest phase-refinement function is the Z 
function, 

z o~ 2 
Z(4,) = ~ ~ ~ IE(H)E(K)E(H - K)I 

H K 

× cos[4,3(H, K)] = maximum, (8) 

which follows from the product of the probabilities of 
the triplets, and where 4, denotes the collectivity of 
refined phases and .4 the asymmetrical unit of 
reciprocal space. Unfortunately, for crystal structures 
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with polar or symmorphic space groups, refinement of 
phases with the Z function often ends in the uncon- 
strained global maximum of Z. Similarly, the phase- 
refinement function, 

J t ~  2 
a(rp) - ~ ~ ~ -~ IE(H)E(K)E(L)E(M)I IX(H, K, L)I 

H K L 

X COS[qb4(H, K ,  L )  - ~ ( H ,  K ,  L ) ]  = m a x i m u m ,  

(9) 

can be derived from the probability distributions of the 
quartets. The principal difference between (8) and (9) is 
that ¢ can be either 0 or rr in the Q function. In this 
way, the incidence of the incorrect solutions (especially 
the U-atom solution) is greatly reduced. Both the Z and 
Q functions are employed in their reciprocal-space 
form. So far, little attention has been paid to the real- 
space meaning of Z and Q. One early interpretation of 
the Z function was given by Cochran (1952) who said 
that the integral, 

f p3 dV, (10) 
v 

which is essentially equivalent to Z, must be a large and 
positive quantity. More recently, Rius (1993) showed 
that the Z function can be reinterpreted in the form of a 
'direct methods' sum function involving the modulus 
function. According to this new view, the close 
relationship between the Q function and the Patterson 
sum function is investigated in the present contribution. 
As will be seen, the capability of predicting negative 
quartets is related to the removal of the origin peak of 
the observed Patterson function. By applying the same 
procedure to the triplet case, a new conditional 
probability distribution of the triplet follows. 

2. The Patterson sum funct ion 

The Patterson sum function is a direct methods sum 
function in which the Patterson-type synthesis is the 
'true' Patterson function. It is given by the integral, 

Q(~) = V 3 f P'(u)P(u, <P)du, (11) 
v 

where P'(u) is the observed Patterson function of the 
squared point atom structure with partially substracted 
origin peak, P(u, ~P) is the Patterson function expressed 
in terms of the phases ~,  and finally V is the volume of 
the unit cell. The observed Patterson function of the 
squared point atom structure is evaluated as, 

P'(u) = -~ ~ [IG(H)I 2 - p(IGI2)]exp(-i2nHu), (12) 
n 

where the I G(H)I are the amplitudes of the structure 
factors of the squared point atom structure, (I GI 2) is the 
value of IG(H)I ~ averaged over all H, and p is a factor 
which determines the fraction of origin peak removed. 

According to their definition and since the space group 
is assumed to be P1, the structure factors of the point 
atom structure are the normalized structure factors. 
Thus, for an equal atom structure, the identities, 

and 

1 
[G(H)[ 2 = ~ IE(H)[ 2 (13) 

1 
(IGI z) = ~ (IEIE), (14) 

hold. Using Parseval's theorem and taking into account 
(12), (13) and (14), the reciprocal-space form of Q(<P) 
follows 

V 2 oo 
Q(¢,) = -~- ~ [IE(h)l 2 -p(IEI2)]lG(h, ¢,)1 z, (15) 

h 

where, for convenience, the usual symbols H, K, L of 
the reciprocal lattice vectors have been replaced by 
h, k, 1. IG(h, cP)l 2 results from multiplying G(h, ~,) (see 
the Appendix) by its complex conjugate, so that 

1 oc 0o 
]G(h, ~)l 2 = ~-~ ~ ~ E(k) E(h - k) E(I) E ( - h  - 1). 

k I 

(16) 

Introducing (16) in (15) and since (/El 2) is equal to 
unity, Q(cp) turns out to be, 

(X) ~O 

Q(@) = N ~ k'~ ~ E ( k ) E ( h -  k ) E ( l ) E ( - h -  !) 
h 

x [IE(h)l 2 - p]. (17) 

Now, if the reciprocal vectors are transformed accord- 
ing t o k = - H ,  h - k = K ,  l = L t h e n h = - H + K ,  
- h - I - - H - K - L = M  and (17) takes the more 
familiar form, 

Q(~) =-fi ~ ~ ~ IE(H)E(K)E(L)E(M)I 
H K L 

x [IE(-H + K)I 2 - p] cos[~4(H, K, L)]. (18) 

Since Q is a large quantity, then the most probable 
values of ~4 are those which maximize the corres- 
ponding summation terms. However, there are three 
different summation terms for a given coS[~a(H, K, L)]. 
Effectively, from the 24 summation terms generated by 
permutation of the - H ,  K, L and M indices having 
identical product IE(-H)E(K)E(L)E(M)I and 
cos[qba(H, K, L)], there are three types differing in the 
factors [IE(-H + K)I 2 - p ] ,  [ IE(-H + L)I: - p ]  and 
[IE(K + L)I ~ - p ] ,  i.e. 

(2/N) IE(H)E(K)E(L)E(M)I [IE(-H + K)[ 2 - p] 

x cos[~P4(H, K, L)] (19) 
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(2/N) IE(H)E(K)E(L)E(M)I [ IE(-H + L)I 2 - p] 

× c o s [ ~ 4 ( H ,  K, L)] (20) 

(2/N) IE(H)E(K)E(L)E(M)I [IE(K + L)I 2 - p] 

× c o s [ ~ 4 ( H ,  K, L)]. (21) 

The information contained in these three terms can be 
easily combined by assuming that the value of c o s  (~)4 
which maximizes their sum, 

(2/N) IE(H)E(K)E(L)E(M)I [ IE(-H + K)I 2 

+ IE( -H + L)I 2 + IE(K + L)[ 2 - 3p] 

x cos[~a(H, K, L)], (22) 

will the most probable. Notice that, for p = 2/3, (22) 
coincides with the argument of the exponential in the 
quartet distribution (5). This result is thus the 
demonstration that the Q function (9) derived from the 
probability distribution of the quartet is essentially 
equivalent to the Patterson sum function (15) with 
p - - 2 / 3 ,  and illustrates the physical basis of the 
conditional probability distribution of the quartet. 

3. The  modulus  sum funct ion  

On the analogy of the Patterson sum function, the 
modulus sum function is defined by the expression, 

Z(~)  = V 2 f P'(u)P(u, <P) du, (23) 
r 

where the Patterson function has been replaced by the 
modulus function P(u). According to Ramachandran & 
Raman (1959), the principal difference between the 
modulus and the Patterson function is the change of the 
relative heights of origin to non-origin peaks. The 
modulus function P' of the squared structure with 
partially removed peaks is, 

1 
e'(u) = ~ Y][IG(H)I-p(IGI)]exp(- i2rcHu),  (24) 

n 

where the coefficients [G(H)[ are obtained by taking the 
square root of (13), so that, 

1 
IG(H)I = ~q)5 IE(H)I (25) 

1 
(IGI) = ~ (IEI), (26) 

and the Fourier coefficients in (24) become 

1 
IG(H)I-p(IG[)  = ~-i55 [IE(H)I-p(IE[)].  (27) 

Transformation of Z(~)  to reciprocal space is per- 
formed by applying Parseval's theorem to (23), so that, 
in view of (27), 

V OG 
Z(~)  = ~ ~ [IE(H)I-p<IE[>] IG(H, ~)1. (28) 

H 

Since for an equal atom structure the phases of G(H) 
and E(H) are alike, then ~p(H) = ~0(H), and from (38), 

1 
IG(H, q~)l = ~ ~ IE(K)E(H-  K)[ exp[i~3(H, K)]. 

K 

(29) 

Substitution of (29) into (28) leads to, 

2 .a 
Z(~)  = ~ ~ ~ [IE(H)l-p(IEI)]  IE(K)E(H - K)l 

× cos[q~3(H, K)], (30) 

where H ranges uniformly over those vectors in the 
asymmetrical unit .,4 of reciprocal space. There are 
three different terms in the double summation for each 
cos[q~3(H, K)]. These terms are 

(2/NI/2)[IE(H)I - p(IEI)] IE(K)E(H - K)I 

x cos[q~3(H, K)] (31) 

(2/N1/2)[IE(K)I - p(IEI)] IE(-H)E(H - K)I 

× cos[~3(H, K)] (32) 

(2/N1/2)[IE(H - K)I - p(IEI) ] IE(-H)E(K)I 

× cos[q~3(H, K)]. (33) 

As for the quartet case, it will be assumed that the most 
probable value of cos[q93(H, K)] is that which maximizes 
the sum of the three terms namely 

2 
N1/2 IE(H)E(K)E(H- K)I Xp(H, K)cos[q~3(H, K)], 

(34) 

with 

Xp(H, K) = 3 - p(Igl> ~ + ~ + IE(H - K)I " 

(35) 

Due to the close resemblance between expressions (22) 
for the quartets and (34) for the triplets, it is to be 
expected that (34) corresponds to the argument of the 
exponential in the probability distribution of the triplet. 
Since the value ofp can vary between 0 and 1, the best p 
value will be determined from a series of test 
calculations. Notice that it is not possible to derive 
Cochran's distribution from (34). Effectively, for 
p = 0, the value of Xp(H, K) is three and not unity as 
Cochran's distribution demands. 

4. Test  ca lculat ions  

The finality of the test calculation is to study the effect 
of introducing different p values in the concentration 
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paramete r, 

1 
Kp = ~ I E ( H ) E ( K ) E ( H -  K)I Xp(H, K). (36) 

The real data employed to perform this study corre- 
spond to the structures given in Table 1. To measure the 
agreement between real and calculated data, the mean 
phase error (MPE) defined by 

MPE(p) : (larc cos{cos[q~3(H, K)]} 

- arccostl~(Kp(H,K)/lo(Kp(H,K)]l) (37) 

T a b l e  1. Relevant crystal data of the examples used for 
the test calculations 

Structure code Formula Z Space group N Reference 

PGE2 C20H3205 1 P1 25 (a) 
MBH2 C15H2403 3 P1 54 (b) 
TVAL C54H9oN6OIs 2 P1 156 (c) 

References: (a) DeTitta, Langs, Edmonds & Duax (1980); (b) Poyser, 
Edwards, Anderson, Hursthouse, Walker, Sheldrick & Walley 
(1986); (c) Karle (1975); Smith, Duax, Langs, DeTitta, Edmonds, 
Rohrer & Weeks (1975). 

has been used wherein the quotient 
II(Kp(H, K)/Io(KpOHI, K) is the expected value of the 
cosine of the triplet - H  + K + (H - K) (Germain, 
Main & Woolfson, 1970). For the sake of complete- 
ness, the MPE's for Cochran's distribution have also 
been computed. The values of ~3 in (37) have been 
derived from the published refined atomic positions. All 
calculations have been performed with a modified 
version of the program XLENS (Rius, 1993). 

Inspection of Table 2, indicates that, in general, the 
best results are obtained for p in the range 0-2/3, since, 
forp -- 1, the MPE's of the triplets involving one weak 
E value are very large (specially for PGE2). 

Inspection of Table 2, also shows a discrepancy 
between the MPE's of Cochran's distribution and the 
rest. This discrepancy which is less obvious for MBH2, 
becomes more evident for the largest structure TVAL. 
This result suggests that there is a factor or three 
missing in the concentration parameter of Cochran's 
distribution. 

This work was partially supported by the Direcci6n 
Gral de Ensefianza Superior (Project PB95-0115) and 
the Direcci6 Gral de Recerca de la Generalitat de 
Catahnya (Grant No. SGR 00460, 1995). 

APPENDIX 
The structure factor G(I-I,¢~) 

The structure factor G(H, ¢~) is the Fourier transform of 
the squared point atom structure expressed in terms of 
the phases ~p(I-l) associated with the normalized 
structure factors E(H). According to the convolution 
theorem which states that the Fourier transform of the 
product of two functions is the convolution of the 
Fourier transforms of the individual functions, G(H, ~) 
can be expressed as the sum 

G(H, 4~)--IG(H, 4,)1 expi~p(H) 

1 
= -~ ~ E ( K ) E ( H -  K). 

K 

(38) 

Table 2. MPE's (° ) for  the distributions with concen- 
tration parameters Kp (p = O, 1/3, 2/3 and 1) and for 

Cochran's distribution 

E I , E 2, E 3 are the E amplitudes involved in the triplet and N r the 
number of triplets. The results indicated that, in general, the smallest 
MPE's are obtained for p between 0 and 2/3. Note the discrepancies 
between the MPE's found for Cochran's distribution and for the rest, 
specially in the case of the largest structure TVAL. 

M P E  ° 

E1 E2 E3 Nr Cochran p = 0  p = 1 / 3 p = 2 / 3  p = l  

(a) PGE2 (N = 25) 
>2.7 >2.7 >2.7 12 13.5 14.5 14.0 14.0 13.7 
>2.5 >2.5 >2.5 30 16.6 20.1 19.5 19.1 18.7 
>2.3 >2.3 >2.3 54 14.7 14.7 14.4 14.2 14.3 
>2.1 >2.1 >2.1 149 14.7 15.2 14.9 14.6 14.5 
> 1.8 > 1.8 > 1.8 514 15.8 17.3 16.9 16.4 16.0 
> 1.6 > 1.6 > 1.6 1064 19.3 20.5 20.1 19.6 19.2 
> 1.4 > 1/4 > 1.4 2745 25.7 26.7 26.1 25.5 25.1 
> 1.2 > 1.2 > 1.2 7329 31.2 32.1 31.3 30.6 30.5 
> 1.0 > 1.0 > 1.0 20300 35.2 35.8 34.9 34.3 34.9 
<0.2 > 1.6 > 1.6 332 44.2 40.5 44.9 51.7 59.7 
<0.2 > 1.8 > 1.8 132 43.8 38.3 44.3 53.4 63.4 
<0.2 >2.0 >2.0 24 47.7 37.4 49.2 62.1 73.5 
<0.4 > 1.6 > 1.6 1475 44.6 42.6 43.7 47.4 53.9 
<0.4 >1.8 >1.8 632 44.4 41.8 43.2 48.0 56.1 
<0.4 >2.0 >2.0 192 44.1 40.9 42.1 47.5 57.5 

(b) MBH2 (N = 54) 
>2.3 >2.3 >2.3 24 12.3 8.5 8.4 8.4 8.7 
>2.1 >2.1 >2.1 84 13.5 14.0 13.6 13.2 13.0 
> 1.8 > 1.8 > 1.8 942 21.8 19.5 19.3 19.2 19.4 
> 1.6 > 1.6 > 1.6 3830 26.5 24.7 24.2 23.9 24.0 
> 1.4 > 1.4 > 1.4 13803 31.2 29.6 29.0 28.7 29.2 
> 1.2 > 1.2 > 1.2 49856 36.2 35.4 34.6 34.2 35.0 
<0.2 > 1.6 > 1.6 1816 44.4 44.6 44.5 45.6 47.7 
<0.2 > 1.8 > 1.8 564 44.9 45.5 44.6 46.0 48.8 
<0.2 >2.0 >2.0 152 42.9 42.2 43.6 48.2 54.7 

<0.35 > 1.6 > 1.6 4597 43.8 44.0 43.7 44.6 46.8 
<0.35 > 1.8 > 1.8 1515 44.8 44.9 44.4 45.7 49.0 
<0.35 >2.0 >2.0 366 42.0 41.2 41.6 45.1 50.8 

(c) TVAL (N = 156) 
>2.5 >2.5 >2.5 48 19.6 7.8 8.6 9.4 10.6 
>2.3 >2.3 >2.3 129 24.0 11.5 12.2 13.3 14.7 
>2.1 >2.1 >2.1 354 31.3 17.1 18.1 19.4 21.2 
>1.8 >1.8 >1.8 1680 36.7 22.0 23.1 24.7 27.2 
> 1.6 > 1.6 > 1.6 6333 40.8 27.7 28.8 30.6 33.4 
> 1.4 > 1.4 > 1.4 23234 45.2 35.0 36.0 37.7 40.3 
<0.4 >1.6 >1.6 4316 45.0 45.1 44.8 45.1 46.0 
<0.4 >1.8 > 1.8 1384 44.2 44.5 44.1 44.3 45.7 
<0.4 >2.0 >2.0 471 42.2 43.4 42.5 42.2 43.8 
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